CRISPR/Cas 9 system for the treatment of dilated cardiomyopathy: A hypothesis related to function of a MAP kinase

Jéssica Olivaesa, Martín Hernán Bonaminoabc, Melissa Medeiros Markoskid,*

A B S T R A C T

Dilated cardiomyopathy (DCM) is a disease with high incidence and mortality rates. Its therapies have one primary goal, which is to minimize symptoms and it has only one effective approach to healing, the heart transplantation. As it is widely associated with genetic causes, the use of gene therapies, such as the CRISPR/Cas9 system, is a promising alternative to treat DCM. For this purpose, it is necessary to analyze possible target genes for this approach and what would be the implications of their use. Here, we hypothesized that cardiac troponin I type 3 interacting kinase (TNI3K), involved with superoxide production in DCM patients, besides other factors, could be a good target for the use of gene editing.

Introduction

Dilated cardiomyopathy (DCM) is characterized by progressive heart failure, with mortality rates ranging from 16% in 10 years to 80% in five years [1]. It is the most frequent cardiomyopathy (around 90% of all) and its incidence is estimated in 5 to 8 cases per 100,000 people. The preeminent morphological modification in DCM is the dilation of both ventricles, which leads to systolic dysfunction, and in some cases, of atria as well [2]. The main symptoms of DCM are left heart failure with progressive dyspnea, frequently progressing to global heart failure with ascites, hydrothorax and jugular swelling [3]. According to Lipschutz et al. (2013), the primary goal of DCM therapies is to increase survival, mitigate disease progression, minimize risk factors, and alleviate symptoms [1]. Conventional therapies, in addition to stimulating a healthy lifestyle, include pharmacological treatments and surgical interventions; heart transplant has been the only effective treatment for the disease [4]. Furthermore, about 40% of DCM cases are associated with a genetic cause [5,6], with the most frequent mutations being located in genes encoding cytoskeletal proteins (leading to sarcomere disruption), cellular metabolism proteins, and intracellular calcium maintenance proteins [7,8]. In this context, genomic edition systems becomes a promising alternative in the treatment of DCM.

To date, the clustered regularly interspaced short palindromic repeats (CRISPR) system and its associated protein Cas9 has been largely applied in experimental medicine [9–11]. Our group has also highlighted potential applications of this system for cardiovascular diseases [12]. The CRISPR/Cas9 system is a simple and low cost method when compared to existing genomic editing methods, such as plasmid vectors and restriction enzymes. It is based on the adaptation of a process present in the immunity of bacteria that uses a small RNA guide to direct an endonuclease (the Cas9) to a specific location on the DNA [13]. The methodology can repair dysfunctional genes, correcting expression levels, or promoting loss or gain of function [14]. In this way, CRISPR genes are first transcribed into a single-stranded RNA, to be processed into a small CRISPR RNA (crRNA), which directs the nucleolytic activity of Cas9 enzyme to degrade specific nucleic acids [13]. Originated from Streptococcus pyogenes, Cas9 is widely used and has already been applied in the genomic edition for several species and cell types [15].

In this scenario, we are proposing that genomic editing based on the CRISPR/Cas9 system could be used for DCM targets. Our hypothesis is that modifications induced by the system can be directed to the disease related genes, causing loss of function in those whose expression is altered in patients with DCM. Such modifications could prevent that ventricular dilation occurs, which would clinically benefit patients suffering from a disease of difficult treatment.

Hypothesis

When analyzing the possible genes involved in the DCM, some are highlighted for being overexpressed in patients with the disease, being necessary to perform knock-down of the same. Therefore, it is possible
to permanently disrupt gene function by generating a mutation in the sequence, which can be achieved by insertion or deletion generated by Non-homologous end joining (NHEJ) or even by deleting entire DNA fragments due to double cutting of the DNA in sites flanking the target sequence to be excised. The target of this mutation may be an exon or essential domains for protein formation [16]. Some of the possible targets, whose modification would be viable to correct, are listed on Table 1.

According to Wheeler et al. (2009), selective inhibition of some of these genes could slow down the progression of the DCM [19]. In case of cardiac troponin 1 type 3 interacting kinase (TNNI3K), our main study object, its function corroborates with injury through increased mitochondrial superoxide production and impaired mitochondrial function, which is largely dependent on p38 mitogen-activated protein kinase (MAPK) activation [23]. Thus, Vagnozzi et al. (2013) also showed that inhibition of TNNI3K could reduce oxidative stress, as well as the injurious remodeling in the heart. Thus, when it comes to the targets pointed in the Table 1, our hypothesis is that the gene tnni3k would be the most important and suitable for genomic editing experiments. Besides, tnni3k gene encodes a protein that belongs to the MAP kinase kinase kinase (MAPKKK) family of protein kinases. The protein contains ankyrin repeat, protein kinase and serine-rich domains, being important in cardiac physiology [24]. Nonetheless, DCM is a disease whose genetic base is caused by modifications that lead to great structural changes in cardiac tissue, and may occur very early during the embryonic stage. Thus, validation experiments end up becoming difficult. In this context, the use of stem cells as the mesenchymal stromal cells (MSC), which are from the mesoderm and able to generate muscle tissue in adulthood, or induced pluripotent stem cells (iPSC), could be of great value to the expression analysis of genomic editing targets [25]. Additionally, for this cell type, both viral vectors [12] and non-viral (plasmids) can be used, as demonstrated by Chicaybam et al. (2017) [26].

Hypothesis evaluation

To the TNNI3K gene, for example, guide RNAs whose targets are exons 4 and 5 will be used, since they have a greater amount of base pairs unique to that gene, generating a deletion of a portion of the gene. Forward and reverse primers will be made for each exon, and, after annealing, they will be cloned into the CRISPR vector pSpCas9(BB)-2A-GFP (PX458). The plasmids will be used to gene modify the target mammalian cells and the deletion can be detected by conducting the Polymerase Chain Reaction (PCR) with primers flanking the deleted region, followed or not by amplicon sequencing. According to the result, it is possible to evaluate whether there was successful editing and whether the clones are homozygous or heterozygous for the deletion to permanently disrupt gene function by generating a mutation in the sequence, which can be achieved by insertion or deletion generated by Non-homologous end joining (NHEJ) or even by deleting entire DNA fragments due to double cutting of the DNA in sites flanking the target sequence to be excised. The target of this mutation may be an exon or essential domains for protein formation [16]. Some of the possible targets, whose modification would be viable to correct, are listed on Table 1.

Implications of the hypothesis

The biggest advantage of using the CRISPR/Cas9 system for editing genes causing DCM and the validation that shows the processes initiated by action or overexpression of protein products can be controlled is the high range of applicability at the clinic. First, because this can be performed in addition to cell therapy, providing “carrier cells” for modified genes and capable to attach to target tissues (in this case, the heart muscle) correcting local processes [27]. Second, because multiplex strategies may be used, where multiple genes could be modified. Ousterout et al. (2015) conducted experiments using the system to modify multiple targets (several exons) on a gene that causes Duchenne Muscular Dystrophy and the modified myoblasts were implanted in mice, showing that the dystrophin was expressed and muscle fibers were formed after 4 weeks [28]. Although, the implications of using CRISPR to provide selective advantage on a tissue or to remove deleterious genes and how this may affect the outcome and efficiency of the editing must be taken into account. Considering a syncytial tissue, as the embryo, for example, it is possible that even after editing, if the cellular product has been shared in the syncytium, the function gain is not seen [29].

The ethical issues involved in using this method are also of importance. Considering the fact that it is a recently developed method, it must be considered if it is a safe method to be used. In the case of DCM, for example, the CRISPR/Cas 9 system could be used in vitro in the transformation of stem cells or cell lines or in vivo by intramuscular injections of plasmids encoding the CRISPR/Cas 9 system or ribonucleoproteins, such as the protein Cas 9 complexed with the gRNA. In addition, it is also necessary to deliberate whether such a method could be used to treat the disease after the appearance of symptoms, or only prior to the development of clinical aspects, as a form of prevention. The assessment of this aspect must be consistent with the actual screening commonly performed in newborns, which means it should be assessed whether the genetic predisposition is usually detected before or only after the onset of symptoms. It is important to emphasize that DCM, as well as most cardiovascular diseases, is multifactorial, and it is not clear how significant the genetic factor is and whether the CRISPR system would actually be effective in treating the disease or alleviating symptoms. Therefore, many studies are needed to assess how genomic editing can stop or soften the symptoms caused by the disease. Nonetheless, this powerful tools are emerging as a light at the end of the tunnel for this disease.
Conclusions and perspectives

We believe that the CRISPR/Cas 9-based gene editing is a promising approach to study the function of genes related to cardiovascular diseases. It could be attempted for DCM with the objective of inactivating erroneously expressed genes that are associated to the disease. Thus, our group is currently pursuing to inactivate the function of the TNNI3K gene through this method and we will test this intervention in MSC. We hope that the results found may provide benefits to the treatment of DCM.

Funding

This work was not supported in the form of grants.

Declaration of Competing Interest

None.

References