Imbalance in DNA repair machinery is associated with BRAFV600E mutation and tumor aggressiveness in papillary thyroid carcinoma.

Lutz BS¹, Leguisamo NM², Cabral NK¹, Gloria HC¹, Reiter KC³, Agnes G⁴, Zanella V⁵, Meyer ELS⁵, Saffi J⁶.

Author information
1 Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
2 Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Molecular and Cellular Cardiology, Instituto de Cardiologia/Fundação Universitária de Cardiologia (IC/FUC), Porto Alegre, Rio Grande do Sul, Brazil.
3 Laboratory of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
4 Laboratory of Molecular Biology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
5 Thyroid Section, Endocrine Division, Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Rio Grande do Sul, Brazil.
6 Laboratory of Genetic Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil. Electronic address: jenifers@ufcspa.edu.br.

Abstract
The involvement of alterations in MLH1, an essential mismatch repair component, in BRAFV600E mutated papillary thyroid carcinoma (PTC) has been suggested to be associated with features of tumor aggressiveness. Thirty-two PTC and surrounding normal thyroid tissues were evaluated for 11 representative DNA repair genes expression. BRAFV600E mutational status assessment and clinicopathological correlations were evaluated for their gene and protein expression. BRAFV600E PTC is associated with lower levels of XPD and MLH1 gene expression. Decrease in MLH1 and XPD mRNA levels in BRAFV600E PTC (but not their protein products) are associated with predictors of poor patient outcomes. Considering the complete subset of patients, MGMT and XRCC2 genes were shown down and upregulated, respectively, in PTC tissues. Low expression of MGMT gene and weak XRCC2 protein expression were correlated with characteristics of tumor aggressiveness. These results suggest that an imbalance in DNA repair gene expression in PTC is associated with aggressive clinicopathological features and BRAFV600E mutation.

KEYWORDS: BRAF(V600E); DNA repair; Papillary thyroid cancer; Prognosis

PMID: 29229408 DOI: 10.1016/j.mce.2017.12.004
Imbalance in DNA repair machinery is associated with BRAFV600E mutation and tumor aggressiveness in papillary thyroid carcinoma. - PubMed - NCBI