Video densitometric assessment of aortic regurgitation after transcatheter aortic valve implantation: results from the Brazilian TAVI registry

Published on 18 March 2016

Hiroki Tateishi1, MD, PhD; Carlos M. Campos2,3, MD; Mohammad Abdelghani4, MD, MSc; Rogério S. Leite5, MD, PhD; José A. Mangione6, MD, PhD; Lízet Bary,7 MSc; Osama I.J. Soliman1, MD, PhD; Ernest Spitzer8, MD; Marco A. Perin2, MD, PhD; Yoshinobu Onuma1, MD, PhD; Patrick W. Serruys9, MD, PhD; Fabio S. Brito Jr2, MD, PhD

1. Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands; 2. Heart Institute (InCor), University of São Paulo Medical School (USP), São Paulo, SP, Brazil; 3. Hospital Israelita Albert Einstein, São Paulo, SP, Brazil; 4. Academic Medical Center, Amsterdam, The Netherlands; 5. Instituto de Cardiologia do Rio Grande do Sul/Fundação Universitária de Cardiologia, Porto Alegre, Brazil; 6. Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil; 7. Pie Medical Imaging, Maastricht, The Netherlands; 8. Cardialysis Core Laboratories and Clinical Trial Management, Rotterdam, The Netherlands; 9. International Centre for Circulatory Health, NHLI, Imperial College London, London, United Kingdom

Aims: We sought to examine the feasibility and reproducibility of a new video densitometric (VD) quantification of aortic regurgitation (AR) on aortography, and its long-term clinical impact.

Methods and results: Using dedicated video densitometry software, AR after TAVI was quantified, and inter- and intra-observer reproducibility was investigated in 182 aortograms of the Brazilian TAVI registry. The aortograms were analysed using two software algorithms: 1) the quantitative regurgitation analysis (qRA) index interrogating the entire left ventricle (LV), and 2) a new method with the left ventricle outflow tract (LVOT) as a region of interest (ROI) (LVOT-AR). LVOT-AR was feasible in 64.8% vs. 29.7% of aortograms, compared with qRA index. Using the LVOT-AR, inter-observer variability was low (mean difference±standard deviation [SD]: 0.01±0.05, p=0.53), and the two observers’ measurements were highly correlated (r=0.95, p<0.001). Patients with LVOT-AR >0.17 had a significantly higher one-year all-cause mortality risk compared with patients with LVOT-AR ≤0.17 (37.1% vs. 11.2%, p=0.0008).

Conclusions: This study proposes an alternative methodology for AR assessment after TAVI by using the LVOT method (LVOT-AR) of VD angiography. The assessment of LVOT-AR is feasible, reproducible and potentially predictive of one-year mortality.
Mangione J
Bary L
Soliman O
Spitzer E
Perin M
Onuma Y
Serruys PW
Lemos P
Brito F