Changes in Renal Glucose Transporters in an Animal Model of Metabolic Syndrome

Abstract

Considering the similarity between structural, hemodynamic, and functional changes of obesity-related renal disease and diabetic nephropathy, we hypothesized that renal glucose transporter changes occur in obesity as in diabetes. The aim of the work was to evaluate GLUT1 and GLUT2 in kidneys of an animal model of metabolic syndrome. Neonate spontaneously hypertensive rats (SHR), n = 15/group, were treated with monosodium glutamate (5 mg/g) (MetS) for 9 days and compared with saline-treated Wistar-Kyoto (C) and SHR (H) rats. Lee index, systolic arterial pressure (SAP), glycemia, insulin resistance, triglycerides, and HDL cholesterol were evaluated at 3 and 6 months. Medullar GLUT1 and cortical GLUT2 were analyzed by Western blot. MetS vs. C and H rats had the highest Lee index (p < 0.001) and insulin resistance (3-months C: 4.3 ± 0.7, H: 3.9 ± 0.9, MetS: 2.7 ± 0.6; 6-months C: 4.2 ± 0.6, H: 3.8 ± 0.5, MetS: 2.4 ± 0.6 · min⁻¹, p < 0.001), similar glycemia, and the lowest HDL-cholesterol at 6-months (p < 0.001). In the MetS and H rats, SAP was higher vs. C at 3-months (p < 0.001) and 6-months (C: 151 ± 15, H: 190 ± 11, MetS: 185 ± 13 mm Hg, p < 0.001) of age. GLUT1 was ~13× lower (p < 0.001) at 3-months, reestablishing its content at 6-months in MetS group, while GLUT2 was ~2× higher (p < 0.001) in this group at 6-months of age. Renal GLUT1 and GLUT2 are modulated in kidney of rats with metabolic syndrome, where obesity, insulin resistance and hypertension coexist, despite normoglycemia. Like in diabetes, cortical GLUT2 overexpression may contribute for the development of kidney disease.

Introduction

There is increasing support for the idea that obesity per se can initiate and accelerate progression of kidney disease [1]. Overweight and obesity in adolescents were associated with a significantly increased risk for all-cause treated end-stage renal disease [2]. In obese patients, structural (glomerulomegaly, podocyte hypertrophy, increased mesangial matrix, and mesangial cell proliferation) and hemodynamic (high glomerular filtration rate, renal plasma flow, and filtration fraction) changes are frequent, although microalbuminuria is less common [3,4]. Abnormalities in plasma glucose and lipid concentration, caused by obesity, may contribute to glomerular basement thickening, even if the level seen in overt diabetes is not achieved [5]. Moreover, high levels of bioactive substances, such as cytokines may also be involved in the pathogenesis of obesity-related renal disease [6], including the possible involvement of the renal sympathetic nervous system [7].

Increased expressions of renal glucose transporters, such as cortical glucose transporter 1 (GLUT1) of mesangial cells [8,9] and cortical glucose transporter 2 (GLUT2) of S1 tubular cells [9,10], participate in the development and progression of diabetic nephropathy. Diabetes-induced GLUT2 overexpression [11,12] and the further rise in it that can be caused by hypertension [9] may promote, in addition to hyperglycemia, a further elevation in the interstitial renal glucose concentration, and more glucose is taken up by mesangial cells through GLUT1. Changes in GLUT1 and GLUT2 expression result in excessive uptake of glucose by mesangial cells; high intracellular glucose levels are involved in the key pathways that lead to glomerulosclerosis, a concept that is supported by in vitro studies identifying GLUT1 as the predominant glucose transporter in mice [13] and human mesangial cells [14].

Considering the similarity between structural, hemodynamic, and functional changes of obesity-related renal disease and diabetic nephropathy,
it is tempting to speculate that renal glucose transporter changes also occur in obesity, as in diabetes. Thus, the aim of this study was to evaluate the expression of renal glucose transporters in an animal model of metabolic syndrome – spontaneously hypertensive rats (SHR) neonatally treated with monosodium glutamate, which together with hypertension and obesity develop insulin resistance.

Materials and Methods

All animals were bred and kept under standard laboratory animal house conditions at the Animal Production and Research Unit of Fundação Estadual de Produção e Pesquisa em Saúde do RS, Brazil. The study was approved by the Research Ethics Committee of Instituto de Cardiologia do RS, Brazil. Animals received standard rat chow and water ad libitum, and were maintained in controlled 12-h light/dark cycle (6:00 AM/6:00 PM) and 20–25 °C temperature conditions.

Starting at day one of life, neonate male spontaneously hypertensive rats (SHR) received subcutaneous administration of monosodium glutamate (MSG, Sigma) diluted in saline solution (0.9% NaCl), 5 mg/g/day, for 9 days (MetS, n = 10), only saline solution (H, n = 10) or only saline solution in the Wistar-Kyoto rats (C, n = 10) for the same period. At 21 days of life, the animals were weaned and placed into plastic boxes (4 animals/box). They were weighed, their nasoanal length measured periodically, and Lee index was calculated [15].

At 3 and 6 months of age, the blood pressure of the animals was measured, and the day after they were subjected to an insulin tolerance test, followed by kidney perfusion, with Hanks’ buffer measured, and the day after they were subjected to an insulin resistance test. The animals were anesthetized to perform systolic blood pressure, the animals were anesthetized to perform euthanasia. The kidneys were perfused with saline solution (0.9% NaCl), 5 mg/g/day, for 9 days (MetS, n = 10), only saline solution (H, n = 10) or only saline solution in the Wistar-Kyoto rats (C, n = 10) for the same period. At 21 days of life, the animals were weaned and placed into plastic boxes (4 animals/box). They were weighed, their nasoanal length measured periodically, and Lee index was calculated [15].

For systolic blood pressure, the animals were anesthetized to place a polyethylene catheter (PE-10) inside the femoral artery. The cannula was connected to a pressure transducer, linked by a channel selector to the CODAS analog-digital board in a microcomputer. Systolic arterial pressure was measured from 12,000 g for 20 min, and the pellet was suspended. Western blot was performed as previously described [9]. Briefly, equal amounts of membrane protein (150μg) were subjected to SDS-PAGE (10%) gel electrophoresis, transferred to nitrocellulose membrane and incubated with the specific antibody (#07-1401 and #07-1402, Millipore, Billerica, USA). The immunoblots were revealed by chemiluminescence using the ECL kit (GE Healthcare, New York, USA). After that, the membranes were reprobed to detect β-actin. Blot intensity was quantified by optic densitometry using Scion Image software and the values of GLUT1 and GLUT2 were corrected by their respective β-actin value, normalized to the control value in each gel.

Results

Table 1 shows the general characteristics of the animals. MetS rats had the highest Lee index since 3 months of age, showing their obesity condition. Glycemia was slightly higher in H and MetS rats as compared to C rats, at 3 months of age, as well as at 6 months; these values were, however, far lower than usually observed in diabetic individuals. The kITT was lower in MetS rats, as compared to both C and H, at 3 and 6 months, indicating the presence of insulin resistance. Systolic artery pressure was similarly higher in H and MetS groups as compared to the C group (p = 0.048), at 3 months (H vs. C, p = 0.004; MetS vs. C, p < 0.001) and 6 months of age (H vs. C e MetS vs. C, p < 0.001). No differences were observed between H and MetS. The highest levels of triglycerides and lowest levels of HDL-C were observed in MetS rats, as compared with C and H groups at 6 months, but not at 3 months of age.

Table 1 General characteristics of studied animals at 3 and 6 months of age.

<table>
<thead>
<tr>
<th></th>
<th>3 Months</th>
<th></th>
<th>6 Months</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>H</td>
<td>MetS</td>
<td>C</td>
</tr>
<tr>
<td>Lee index</td>
<td>0.78 ± 0.12</td>
<td>0.84 ± 0.14</td>
<td>1.23 ± 0.17†‡</td>
<td>1.19 ± 0.11†</td>
</tr>
<tr>
<td>Glycemia (mg/dl)</td>
<td>62.9 ± 2.6</td>
<td>38.1 ± 2.9*</td>
<td>78.8 ± 2.3*</td>
<td>63.0 ± 2.9</td>
</tr>
<tr>
<td>kITT (%·min⁻¹)</td>
<td>4.3 ± 0.7</td>
<td>3.9 ± 0.9</td>
<td>2.7 ± 0.6†</td>
<td>4.2 ± 0.6</td>
</tr>
<tr>
<td>SAP (mm Hg)</td>
<td>130 ± 13</td>
<td>177 ± 18*</td>
<td>171 ± 15*</td>
<td>151 ± 15†</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>50 ± 4</td>
<td>53 ± 3</td>
<td>56 ± 2</td>
<td>54 ± 5*</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>49 ± 9</td>
<td>48 ± 12</td>
<td>50 ± 16</td>
<td>60 ± 7</td>
</tr>
</tbody>
</table>

C: Wistar-Kyoto rats that did not receive any treatment; H: spontaneously hypertensive rats that did not receive any treatment; MetS: spontaneously hypertensive rats that received MSG during the neonatal period (n = 5 in all groups); kITT: Constant rate of decrease of the blood glucose concentration; SAP: Systolic arterial pressure; HDL-C: High density lipoprotein cholesterol

Two-way analysis of variance (ANOVA), followed by Bonferroni’s post hoc test: *p < 0.05 vs. C; †p < 0.05 vs. H, same time; ‡p < 0.05 vs. 3 months, same group
Medullary GLUT1 and cortical renal GLUT2 expression analysis are shown in Fig. 1. At 3 months, there was a reduction of ~90% in the medullary GLUT1 expression in kidney from MetS rats as compared to C and H animals (p < 0.001 for both comparisons). At 6 months there was a reduction of this glucose transporter in MetS rats as compared to H rats (25% and p = 0.007), and no difference was observed when it was compared to C rats. Moreover, medullary GLUT1 expression of the MetS group at 6 months was elevated 13-fold (p < 0.001) when compared to the same group at 3 months of age.

Cortical renal GLUT2 expression was similar among groups at 3 months of age, but it was increased 1.5-fold in the MetS group at 6 months as compared to C and H animals (p < 0.001 for both comparisons). Moreover, cortical renal GLUT2 expression in MetS rats at 6 months was 76% higher when compared to animals from the same group at 3 months of age (p = 0.004).

Discussion and Conclusions

This study demonstrates that renal glucose transporters (GLUT1 and GLUT2) are both modulated in kidneys of rats with metabolic syndrome, where visceral obesity, insulin resistance, and hypertension all coexist, although no hyperglycemia was detected.

Cortical GLUT2 was overexpressed in the kidney of 6-month-old MetS rats, as it has been described in the kidney of diabetic [10] and hypertensive rats [12]. Slc2a2 gene, which encodes the GLUT2 protein, is positively regulated by glucose concentration in liver [17] and kidney [18]. However, glucose homeostasis (glycemia and insulin resistance) of MetS rats was similarly regulated at 3 and 6 months of age, suggesting that GLUT2 overexpression observed only in 6-month-old MetS rats was determined by other concomitant mechanisms. Inflammation could also be related to altered GLUT2 expression, as it is clearly demonstrated for GLUT4 protein in adipocytes [19]; however, the inflammatory condition also seems to be similar in 3- and 6-month-old MetS [20]. Finally, a possible causal mechanism of GLUT2 overexpression could be related to hyperlipidemia, established only in 6-month-old MetS animals [20]. Hyperlipidemia is able to induce oxidative stress [21, 22], to which is ascribed the capability of increasing the transcriptional activity of hepatocyte nuclear factor-3 [23]. HNF-3β is an important enhancer of Slc2a2 gene, and is related to renal GLUT2 overexpression in diabetic rats [18]. Furthermore, the sterol response element-binding protein-1c (SREBP-1c) is another enhancer of the Slc2a2 gene [24], which can be regulated by changes in lipid metabolism. Thus, hyperlipidemia is a strong candidate to induce GLUT2 overexpression in 6-month-old MetS rats.

Fig. 1 Renal glucose transporter protein expression. The Western blot bands and quantitative analyses corrected by their respective β-actin value are represented. Panel a Medullary GLUT1; Panel b Cortical GLUT2. C: Wistar-Kyoto rats, no treatment; H: SHR, no treatment; MetS: SHR that received MSG; n = 5 in all groups. Two-way analysis of variance (ANOVA), Panel a (p < 0.001) and Panel b (p < 0.001), followed by Bonferroni’s post hoc test: *p < 0.05 vs. C; †p < 0.05 vs. H, at the same time.
however, in this case, despite increased glucose reabsorption in segment S1, the high glucose filtered rate guarantees high glu-
cose disposal to tubular cells of downstream segment of the
nephron. Finally, it is important to show that changes in medul-
mary GLUT1 expression, which is related to S3 segment tubular
cells, where only residual glucose reabsorption occurs, was not
clearly associated with significant tubular dysfunction yet, as
has extensively been shown for changes in GLUT2 expression
[18].

In conclusion, GLUT2 overexpression observed in renal cortex of
animals with metabolic syndrome is a new finding, possibly
related to the visceral obesity, insulin resistance, hypertension,
and inflammation of this condition. This GLUT2 overexpression
occurs irrespectively of the absence of hyperglycemia, and may
contribute to the development of metabolic syndrome-related
kidney disease.

Conflict of Interest

The authors declare that they have no conflicts of interest in the
authorship or publication of this contribution.

References

1 Mukhajaenge J, Lydersen S, Wideroe TE, Hallan S. Prehypertension,
 obesity, and risk of kidney disease: 20-year follow-up of the HUNT I

2 Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, Calderon-
 Margalit R. Body Mass Index in 1.2 Million Adolescents and Risk for
 End-Stage Renal Disease. Arch Intern Med 2012; 1: 7

3 Serra A, Romero R, Lopez D, Navarro M, Esteve A, Perez N, Alastrue
 A, Ariza A. Renal injury in the extremely obese patients with normal

4 Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J,
 Gaffer U. Obesity-induced glomerular hyperfiltration: its involve-
 ment in the pathogenesis of tubular sodium reabsorption. Nephrol
 Dial Transplant 2008; 23: 3946–3952

5 Goumenos DS, Kavaros B, El Nahas M, Conti S, Wagner B, Spyropoulos C,
 Vlachojannis JG, Benigni A, Kalfarentzos F. Early histological changes
 in the kidney of people with morbid obesity. Nephrol Dial Transplant
 2009; 24: 3732–3738

6 Hunley TE, Ma LJ, Kim V. Scope and mechanisms of obesity-related

7 da Silva Mattos AM, Xavier CH, Karlen-Amante M, da Cunha NV, Fontes
 MA, Martins-Pinge MC. Renal sympathetic nerve activity is increased
 in monosodium glutamate induced hyperadipose rats. Neurosci Lett
 2012; 522: 118–122

8 D’Agost Schaan B, Lacchini S, Bertoluci MC, Irigoyen MC, Machado UF,
 Schmid H. Increased renal GLUT1 abundance and urinary TGF-beta 1
 in streptozotocin-induced diabetic rats: implications for the develop-
 ment of nephropathy complicating diabetes. Horm Metab Res 2001;
 33: 664–669

9 Schaan BD, Irigoyen MC, Bertoluci MC, Lima NG, Passaglia J, Hernes E,
 Oliveira FR, Okamoto M, Machado UF. Increased urinary TGF-beta 1 and
cortical renal GLUT1 and GLUT2 levels: additive effects of hyperten-

10 Vesti S, Okamoto MM, de Freitas HS, Aparecida Dos Santos R, Nunes
 MT, Morimitsu J, Heinmann JC, Machado UF. Changes in sodium or
 glucose filtration rate modulate expression of glucose transporters in

11 Freitas HS, D’Agost Schaan B, da Silva RS, Okamoto MM, Oliveira-Souza
 M, Machado UF. Insulin but not chlorozinc treatment induces a tran-
sient increase in GLUT2 gene expression in the kidney of diabetic rats.
 Nephron Physiol 2007; 105: 42–51

12 Schaan BD, Irigoyen MC, Lacchini S, Moreira ED, Schmid H, Machado
 UF. Sympathetic modulation of the renal glucose transporter GLUT2

13 Zhang J, Liu Z, Liu D, Li L. Identification of glucose transporter-1 and
 its functional assay in mouse glomerular mesangial cells cultured in

 114: 824–828

15 Bernardis LL, Patterson BD. Correlation between ‘Lee index’ and car-
cass fat content in weaning and adult female rats with hypothalamic

16 Mori RC, Hrabara SM, Hirata AE, Okamoto MM, Machado UF. GlimepIr-
 ide as insulin sensitizer: increased liver and muscle responses to insu-

17 Rencurel F, Waebber G, Antoine B, Roccichellini F, Mauled P, Girard J,
 Leturque A. Requirement of glucose metabolism for regulation of glu-
 cose transporter type 2 (GLUT2) gene expression in liver. Biochem J
 1996; 314 (Pt 3): 903–908

18 Freitas HS, Schaan BD, David-Silva A, Sabino-Silva R, Okamoto MM,
 Alves-Wagner AB, Mori RC, Machado UF. SLCA2A gene expression in
 kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta.
 Mol Cell Endocrinol 2009; 305: 63–70

19 Nguyen MT, Satoh H, Faveylukis S, Babendure JL, Imamura T, Sbodio
 H, Zelikovsky J, Dahutat Bi, Cadviff Y, Catifff JS, INK and tumor necrosis
 factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-

20 Gjedde A, Lehnen AM, Nelem AM, Machado UF, Okamoto MM, Markoski
 MM, Pinto GH, Schaan BD. GLUT4 content decreases along with insu-
 lin resistance and high levels of inflammatory markers in rats with met-
 abolic syndrome. Cardiovasc Diabetol 2012; 11: 100

21 Ban JH, Bassenge E, Kim KB, Kim YN, Kim KS, Lee HJ, Moon KC, Lee MS,
 Park KY. Schwemmer M. Postprandial hypertriglyceridemia impairs
 endothelial function by enhanced oxidant stress. Atherosclerosis
 2001; 155: 517–523

22 Kotur-Stevuljevic L, Pecic-Otic A, Spasic S, Stefanovic A, Paripovic D,
 Kostic M, Vasic D, Vujovic A, Jelic-Ivanovic Z, Spasojevic-Kalinovanska
 V, Kornic-Ristovski D. Hyperlipidemia, oxidative stress, and intima
 media thickness in children with chronic kidney disease. Pediatr
 Nephrol 2013; 28: 295–303

23 Vulin AI, Stanley MG. Oxidative stress activates the plasminogen ac-
 tivator inhibitor type 1 [PAI-1] promoter through an AP-1 response
 element and cooperates with insulin for additive effects on PAI-1

24 Im SS, Kang SY, Kim SY, Kim HJ, Kim IW, Kim KS, Ahn VH. Glucose-
 stimulated upregulation of GLUT2 gene is mediated by sterol response
 element-binding protein-1c in the hepatocytes. Diabetes 2005; 54:
 1684–1691

25 Lehnen AM, Lequisamo MM, Cesalli KR, Schaan BD. Progressive cardio-
 vascular autonomic dysfunction in rats with evolving metabolic syn-
 drome. Auton Neurosci 2013; 176: 64–69

26 Seraphim PM, Nunes MT, Gianncoo G, Machado UF. Age related obes-
 ity-induced shortening of GLUT4 mRNA poly(A) tail length in rat gas-
 trocnemius skeletal muscle. Mol Cell Endocrinol 2007; 276: 80–87

27 Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, Brun-
 neke HS, Merkewirth C, Kaschik H, Okkonen VM, Botter T, Braun T,
 Seilbter J, Bruning JC. Obesity-induced overexpression of miRNA-143
 inhibits insulin-stimulated AKT activation and impairs glucose metab-

28 Trakooljul A, Nicks JA, Liu HC. Identification of target genes and path-
 ways associated with chicken microRNA miR-143. Anim Genet 2010;
 41: 357–364

29 Marks J, Carvalho P, Dehmam ES, Srai SK, Unwin BJ. Diabetes increases
 facilitative glucose uptake and GLUT2 expression at the rat proximal

30 de Carvalho Papa P, Vargas AM, da Silva JL, Nunes MT, Machado UF.
 GLUT4 protein is differently modulated during development of obesity